Following the release of our highly popular A.IR Shield Nano, we have received numerous requests about using the module with platforms other than Windows. Because the module uses a standard Serial USB interface for communicating, experienced users can easily integrate it into any other platform. To assist other users we have now released an A.IR Shield Nano Python Script. Continue reading A.IR Shield Nano Python Script – Raspberry Pi (RPi)→
A.IR Shield ESP8266/ESP32 Tx for AnalysIR with IR Blasters
The latest member of our MakeIR series of devices & kits is the A.IR Shield ESP8266/ESP32 Tx. This shield works out of the box with AnalysIR and is essentially plug & play, with additional custom Firmware options. This shield is a ‘sibling’ to our related TRx shield, and features IR multi-send only vs the send & receive of the TRx shield. The shield plugs into a Wemos D1 Mini (ESP8266) with headers or any pin-compatible clone (e.g. ESP32 Mini D1). Although designed specifically for AnalysIR, users can also upload any sketches that run on the ESP for Infrared remote control projects by customising the included firmware. A.IR Shield ESP8266/ESP32 Tx is built with only the highest quality IR components available and boasts dual Infrared emitters with configurable IR Power. The supplied firmware uniquely supports hardware PWM for sending IR signals (on ESP8266). Continue reading Preview: A.IR Shield ESP8266/ESP32 Tx, a high-end IR Shield→
We have posted a brief 4 minute “Using AnalysIR with Flirc – Video tutorial” showing how to use the Flirc USB device as an Infrared remote control signal source for AnalysIR. The video is available now via YouTube, by clicking the image below. The tutorial covers the semi-automatic method we have used to support this feature, which should greatly enhance the Flirc Device and enable more troubleshooting with problematic signals or just simply as an additional powerful feature for the Flirc device. There is no need to update your Flirc installation or firmware, provided you have the latest revision installed.
The latest member of our MakeIR series of devices & kits is the A.IR Shield ESP8266 TRx.
A.IR Shield ESP8266 TRx with Wemos D1 Mini
This shield works out of the box with AnalysIR and is essentially plug & play, with additional custom Firmware options. The shield plugs into a Wemos D1 Mini (ESP8266) with headers or any pin-compatible clone. Although designed specifically for AnalysIR, users can also upload any sketches that run on the Wemos for Infrared remote control projects by customising the included firmware. A.IR Shield ESP8266 TRx is built with only the highest quality IR components available and boasts dual Infrared emitters with configurable IR Power. The supplied firmware uniquely supports hardware PWM for sending IR signals.
A.IR Shield block diagram ESP8266 TRx
We have provided a link below to the product data sheet and would welcome feedback on additional, nice to have or missing features, if any. Please read the data sheet for a more detailed description of the A.IR ESP8266 TRx shield. The shield is now available to purchase via our web shop.
A.IR Shield ESP8266 TRx Wemos D1 Mini side-by-side
Custom Firmware
Although designed to work with AnalysIR, users can customise the provided firmware to send and receive IR signals via web requests, thus making integration into projects easy. More advanced users can integrate into platforms like Alexa or similar.
Also check out our example for creating your own IR send sketch for a variety of Signals (Air Conditioner, HEX, RAW & protocol based) using this shield with a Wemos D1 Mini or any ESP8266.
In our previous post we showed how to generate stable IR carrier signals using the ESP8266 NodeMCU module. A feature of the original approach was that the output IR signal was inverted and required some additional circuitry to invert it again before transmission. Since the original post we have figured out a method to output a non-inverted or standard IR signal thus removing the need for the additional circuitry. This is achieved by using what turned out to be a very simple setting hidden deep in the ESP8266 UART registers which is covered below. Like all simple solutions it also threw up some other quirks of the ESP8266 NodeMCU, which were eventually overcome with the addition of a simple resistor. The Updated ESP8266 NodeMCU Backdoor uPWM Hack for IR signals is detailed below – including updated source firmware, new circuit diagram and explanation of the ‘quirk’. Read on….
ESP8266 NodeMCU and MakeIR SendIR module from AnalysIR
One of the most popular projects involving Infrared remote control, is to use an Arduino to control an Air conditioner (AC) system. However, AC signals are usually very long and take up a lot of SRAM on a standard Arduino. Experienced users will go about reverse engineering the AC protocol to make the sketch fit within the 2K Bytes of SRAM. Many hobbyists will struggle, even with the help of tools like AnalysIR to guide them. In this post we cover sending long AC Signals from Flash with IRremote. IRremote (along with IRLib) is a popular open-source library for sending and receiving IR remote control signals with Arduino. The demo code covered in this sketch extends our previous sendRAW example by demonstrating how to store many long AC signals in Flash with little or no SRAM overhead.
AnalysIR screen-shot showing the signals captured from the sendRAW_Flash sketch (click or more detail)
Marco is a volunteer for an organization (NSW Australia) that builds custom aids for people with disability, and has recently been looking at a project to create a ‘very large button’ IR remote control for a cable TV Set Top Box (STB). The custom unit needed basic functions (Channel Up/Down, Volume Up/Down and Power On/Off). Commercially available large button remotes have buttons that are still too small and/or they have too many buttons. Soon he hit a roadblock trying to capture some difficult Foxtel signals and searched all over the web looking for a solution. Needless to say, nothing worked out for him until he came across AnalysIR via Google. Once he started Troubleshooting the Big Button Infrared remote control with AnalysIR the root cause of his problems became obvious.
One of our users from Italy, Guido, was tasked with upgrading an old in-house WRC system to allow the team of Sport’s Journalists to access the rack of satellite receivers relaying the various sports events around the building. The challenge is that all of the STB (Set Top Boxes) are located in a dedicated room away from the Journalist’s desks and it is impractical for them to manually change the stations when working to tight deadlines. Previously there was a system in place to remotely switch feeds, but Guido needed to upgrade the system to handle the ever growing number of devices and Infrared protocols. Luckily, he found AnalysIR during his research to implement ‘a hack for Hacks using AnalysIR‘.
In this blog post we follow up on our recent article about generation of infrared PWM from the Photon’s UART where we suggested that it may be possible to achieve something similar with the Arduino. In our previous attempt the Arduino was only able to generate PWM at 40 kHz and 33 kHz using the same approach. After some investigations we discovered a new approach which provides an even better set of results using the Arduino’s USART. Yes, we were able to generate 30, 33, 36, 38, 40 , 56 and surprisingly the illusive 455 kHz which was not possible on the Photon (using this approach). Read on for the details. Readers should also study our original series of articles on ‘softPWM‘ for a better understanding of the source code which can be downloaded below.
We have just posted a 25 minute LearnIR video tutorial introducing the GUI (Graphical User Interface) of LearnIR, which is available via YouTube. The tutorial covers the important features available with LearnIR through the GUI. We cover each of the feature tabs in the Windows application including Learning, Configuration, Utilities, Library, Debug mode and firmware updating.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.