Tag Archives: Vishay

Updated ESP8266 NodeMCU Backdoor uPWM Hack for IR signals

In our previous post we showed how to generate stable IR carrier signals using the ESP8266 NodeMCU module. A feature of the original approach was that the output IR signal was inverted and required some additional circuitry to invert it again before transmission. Since the original post we have figured out a method to output a non-inverted or standard IR signal thus removing the need for the additional circuitry. This is achieved by using what turned out to be a very simple setting hidden deep in the ESP8266 UART registers which is covered below. Like all simple solutions it also threw up some other quirks of the ESP8266 NodeMCU, which were eventually overcome with the addition of a simple resistor. The Updated ESP8266 NodeMCU Backdoor uPWM Hack for IR signals is detailed below – including updated source firmware, new circuit diagram and explanation of the ‘quirk’. Read on….

Esp8266 NodeMCU and MakeIR SendIR module from AnalysIR
ESP8266 NodeMCU and MakeIR SendIR module from AnalysIR

Continue reading Updated ESP8266 NodeMCU Backdoor uPWM Hack for IR signals

Troubleshooting the Big Button Infrared remote control with AnalysIR

Marco is  a volunteer for an organization (NSW Australia) that builds custom aids for people with disability, and has recently been looking at a project to create a ‘very large button’ IR remote control for a cable TV Set Top Box (STB). The custom unit needed basic functions (Channel Up/Down, Volume Up/Down and Power On/Off). Commercially available large button remotes have buttons that are still too small and/or they have too many buttons. Soon he hit a roadblock trying to capture some difficult Foxtel signals and searched all over the web looking for a solution. Needless to say, nothing worked out for him until he came across AnalysIR via Google. Once he started Troubleshooting the Big Button Infrared remote control with AnalysIR the root cause of his problems became obvious.

Troubleshooting the Big Button Infrared remote control with AnalysIR
Marco’s Big Button Infrared Remote control

Continue reading Troubleshooting the Big Button Infrared remote control with AnalysIR

Preview: A.IR Shield Nano, a high-end Infrared Shield for AnalysIR, IRremote & IRLib

The fifth member of our MakeIR series of devices & kits is the A.IR Shield Nano. This shield works out of the box with AnalysIR and is essentially plug & play , with additional prototyping options. The shield comes attached to an Arduino nano compatible device (clone). Although designed specifically for AnalysIR, users can also upload IRremote, IRLib or any Arduino sketches that run on the Nano. A.IR shield is built with only the highest quality IR components available and boasts dual Infrared emitters with configurable IR Power.

A.IR block diagram
A.IR Shield Nano block diagram

We have provided a link below to the preliminary product data sheet and would welcome feedback on additional, nice to have or missing features, if any. Please read the data sheet for a more detailed description of the A.IR shield. Continue reading Preview: A.IR Shield Nano, a high-end Infrared Shield for AnalysIR, IRremote & IRLib

Infrared receiver showdown – TSOP34438 vs VS1838B winner revealed

Having helped many makers resolve problems with Infrared remote control projects over on the Arduino forum, we decided to put 2 of the more common 38kHz receivers, TSOP34438 vs VS1838B,  ‘head-to-head’ over 3 rounds in a winner takes all contest. Different people report a wide variety of problems when first attempting infrared remote control, resulting from using the wrong receiver to timer or interrupt conflicts between the various libraries available. Our commentary on the ‘face-off’ will hopefully shed some light on the ability of these 2 common Infrared receivers to deliver results, as expected.

Idle Interference on VS1838B
Idle Interference on VS1838B

Continue reading Infrared receiver showdown – TSOP34438 vs VS1838B winner revealed

Preview: DetectIR, advanced infrared receiver

The fourth member of our MakeIR series of devices & kits will be DetectIR. This infrared receiver module can be configured for Visual IR signal detection, Serial over IR or as an Infrared receiver which can handle even the longest Air conditioner signals. DetectIR is built with only the highest quality IR components available.

DetectIR block diagram
DetectIR block diagram

We have provided a link below to the preliminary product data sheet and would welcome feedback on additional, nice to have or missing features, if any. Please read the datasheet for a more detailed description of DetectIR. Continue reading Preview: DetectIR, advanced infrared receiver

Poor maker’s Infrared receiver #2

Our recent post about the silver bullet IR receiver proved very popular and we promised that we would follow-up with another variant of the poor maker’s Infrared receiver. This time we are using an IR Led (emitter), 2 resistors and any standard Arduino. You will also need to download the Arduino code provided below, compile and upload it. One of the most common problems encountered when trying to decode IR signals is that makers don’t always have the appropriate IR receiver for the job in hand or have to wait for one to be delivered by mail. Here we present an affordable method to allow you to use any IR emitter (LED) as a receiver and as a bonus we are publishing the Arduino code to make it all work.

Circuit Diagram: Poor maker's IR Receiver
Circuit Diagram: Poor maker’s IR Receiver

Continue reading Poor maker’s Infrared receiver #2

Infrared Receivers – signal lag and distortion

Many electronics enthusiasts will be familiar with how Infrared receivers demodulate IR signals. In this post we show a visualisation of the time lag and distortion of the signals as they pass through the IR receiver for demodulation and noise filtering.  Most DIY projects use the raw timings from the IR receiver to decode individual signals. However, not many will be aware that IR receivers can distort the signal timings by significant amounts. Fortunately, common IR decoders take this into account and compensate for timing distortions introduced by infrared demodulators / receivers.

Infrared Signal, Modulated & De-modulated
Infrared Signal, Modulated & De-modulated

Continue reading Infrared Receivers – signal lag and distortion

Arduino: 10 common pitfalls with Infrared Remote Control

Arduino: 10 common pitfalls with Infrared Remote Control
Arduino: 10 common pitfalls with Infrared Remote Control

Over the last few months we have been regular contributors to the Arduino and other forums, answering questions about Infrared remote control projects. It became apparent that beginners typically trip up on many common ‘pitfalls’. So we decided to list off our ‘Top 10’.

 

Continue reading Arduino: 10 common pitfalls with Infrared Remote Control

Custom TV remote control using Arcade style console

  Following on from our previous blog post about SKY+ RC6 IR codes, we have now completed the project and are about to ship to its new owner – a friend of ours.

SR1We purchased a Sega megadrive Arcade style games console which was BNIB for €25 ($35) and disabled all of the built-in gaming functionality. We then wired up each of the 12 available switches (Joystick & Arcade style buttons) to the Arduino Nano which was placed onto an Arduino prototyping shield and mounted to the enclosure using ‘lots’ of hot glue. Note some of these consoles come with an additional 2 buttons, which can bring the total to 14. In addition, the joystick has 8 positions in total of which we used only 4 as it would be too difficult for the user to manage all eight. Continue reading Custom TV remote control using Arcade style console

Infrared Component Kits

We have decided to offer a small number of Infrared Component Kits to help users of AnalysIR get started quickly. As a minimum you will require 1 IR receiver to use AnalysIR, plus we highly recommend the ‘IR Learner’ below if you also want to measure modulation frequency.

(Note: This is an updated copy of the original document from the crowd-funding campaign. The original document can be found here.)

IR receivers/emitter in Infrared Component Kits:

Model Frequency Description Gain Typical Application
TSSP4038 38kHz 1 x IR receiver Fixed Gain Barrier + AnalysIR
TSMP58000 20 -> 60kHz 1 x IR receiver Learner + AnalysIR
TSOP4436 36kHz 1 x IR receiver AGC 4 RC5/6
TSOP34438 38kHz 1 x IR receiver AGC 4 NEC
TSOP4840 40kHz 1 x IR receiver AGC 2 SONY
TSOP2256 56kHz 1 x IR receiver AGC 2 RCA
TSAL6100 All 1 x IR emitter IR LED transmitter

AGC 2: Standard Applications
AGC 4: Very Noisy Environment

Kits do not include AnalysIR

Select one or more kits from the following:

Item Kit A Kit B Kit C Kit D Kit E Kit F
TSSP4038 Y Y Y Y Y Y
TSMP58000 Y Y Y Y Y Y
TSOP4436 Y Y Y Y
TSOP34438 Y Y Y Y
TSOP4840 Y Y
TSOP34156 Y
TSAL6100 Y Y Y Y Y
Bonus Gift see 11
below
Y Y Y Y Y Y
Shipping see 9
below
Y Y Y Y Y Y
Student Tip Y Y Y Y Y Y
Perk Price $8 $10 $10 $12 $13 $15

 Y = Included

Instructions:

  1. Select the kit you want based on the items included
  2. For example, Kit A contains 1 x TSSP4038, 1 x TSMP58000, plus shipping (see 9 below) and a small tip/gratuity for the student.
  3. Then purchase the kit or kits you want by contributing the relevant cost (or sum for multiple kits)
  4. To purchase Kit A just make  an $8 payment  via the PayPal button on this page. To purchase multiple kits just make one contribution to the same perk for the total amount.
  5. If you select Kit B or Kit C then include  a message on PayPal to clarify which perk you want.
  6. These component Kits do not include AnalysIR.
  7. Cost increased (Sep 2014) due to increase in postage.
  8. TSOP4438 replaced with more modern TSOP34438.
  9. Shipping: is included in price above, provided you are also buying AnalysIR or have bought AnalysIR previously. Otherwise, add $5 to the prices above (once only) for worldwide shipping.
  10. Delivery, usually takes from 5->10 working days. There may be some exceptions to this – depending on location.
  11. Bonus gift: We also include a selection of useful components, with all kits, to help with your IR projects. (2 x NPN + 8 x resistors … enough to complete a good Infrared emitter circuit for longer range)

Notes:

  1. Please feel free to order these parts directly your-self. We won’t be offended in any way. We are not offering these to make any $$$ at all. In fact it is much less work for us if backers have or supply their own components.
  2. Kit A, B or C is more than adequate for most users.
  3. Standard shipping worldwide for owners of AnalysIR is included, Otherwise add an extra $5, as per Instruction 9 above.  Postage is not tracked or insured. Unfortunately, we cannot provide any replacements for items mislaid in the post or delivery failures. Due to the low value, we do not expect that there would be customs charges etc.  and if there are any you will have to cover this cost.
  4. We have included a small tip/gratuity for the student who has agreed to pack & post these perks.
  5. This perk is intended as a quick start aid for backers.
  6. These perks will be posted from Dublin, Ireland and typically take 5-10 working days depending on worldwide destination.
  7. You can select multiple kits.
  8. All kit IR components are from Vishay, who are a leading supplier of high quality components. We use them all the time for IR components.
  9. We have allowed for the Sales Tax, IGG, PayPal, Currency & inward shipping charges which will be levied on us for these components.
  10. We reserve the right, at our sole discretion, to alter or replace any component if it is not available when we order them. However, we will do our best to match functionality as much as is reasonable. Hopefully this won’t be an issue.
  11. We have not included any Arduinos as they are freely available online. Many of these kit components are not easily available in quantities of 1, without excessive mark-ups, high minimum orders or postage.
  12. Shipping will be to PayPal registered address. (Let us know, immediately, if you want it sent to an alternative address)
  13. Use the Contact Form to contact us, directly.

E.&O.E.